Natural Dog Training in New York City

Natural Dog Training in New York City
Featuring All 100+ Articles Lee Charles Kelley Wrote About Dogs for from 4/09 to 2/13, Plus New Articles Written in the Same Vein!

Saturday, September 24, 2016

Positive Reinforcement vs. Drive Training

Which Training Approach Is Best?

In certain training circles it’s widely believed that learning theory is the only truly scientific and, therefore, the only correct approach for training dogs.

Is this true?

Not exactly.

To be fair, learning theory (also known as behavioral science or behavior analysis) is much more scientific than dominance theory, especially as it’s applied to dog training. There is plenty of scientific evidence showing that dogs and wolves form dominance hierarchies, but none showing that such hierarchies can cross species boundaries.

Still, while dominance training is based mostly on fantasy, not science, positive training is not based on hard science. There are no underlying scientific principles behind how learning theory works in the way that there are in physics and chemistry, where natural phenomena are explained through specific scientific laws. Learning theory is explained only through statistics. Don’t get me wrong. Statistics are important. But they don’t describe the how and why of behavioral changes in humans and animals, only the when and how often.

There are two other problems. And they’re huge.

First, modern, 21st Century research has shown that behavioral changes don’t take place through associative learning, the theoretical process where a human or animal associates a behavior with a reward and thus wants to repeat that behavior to get another reward. etc. In fact, B. F. Skinner—who created this model of learning—said that the only way to ensure that learning will stick is to provide a series of initial rewards, then start withholding expected rewards using what’s called a variable reinforcement ratio. And unless you have an advanced degree, it can be very difficult to do this with any accuracy.

So that’s the first problem. 

The second is that in actually studying the effects that take place in the brains of animals during the learning process, scientists have found a puzzling paradox: dopamine— often referred to as one of the brain’s reward chemicals—is not released in connection with an external reward, it’s released in the absence of an expected one. Other research shows that dopamine is not really a reward chemical at all. It’s more like a salience detector, meaning that it helps humans and animals pay close attention to changing patterns in their environment. The upshot is that learning doesn’t take place through forming an association between a behavior and a reward but rather through a mostly unconscious process called pattern recognition.

I’ve found that an easy way to determine if this is true is to teach a puppy to sit, but do so, out of sequence, in the following manner: Show the puppy a treat. As he tries to grab it, move it around in such a way that at some point the pup sits on his own. As soon as he sits give him the treat. Then—after he’s already eating his “reward”—wait a moment, then say “Sit!” in a happy voice.

Do this three or four times. Then, show him the treat again and say “Sit!” without waiting for him to exhibit the behavior. Wait a half-a-second or so, and the pup will automatically sit.

Go through this same process again later, in a slightly different environment, or at a different time of day. And once you’ve done it several times, under slightly different circumstances, all you have to do is show the pup a treat, say “Sit!” and the pup will automatically sit.

If learning takes place through associating a behavior with an external reward, the pup wouldn’t learn to sit through this “backwards” way of doing things. Or at the very least, it would take much longer for the pup to learn the behavior and repeat it in a reliable way.

Of course, the sit is among the easiest and most basic behaviors we can teach a dog. And some readers may not see the distinction I’m making between associative learning and pattern recognition. So let’s look at the very complex behaviors exhibited by some working dogs.

Border collies operate almost entirely on pattern recognition. They have to take into account the movement of the flock as a whole, the behaviors of the individual sheep, the changing nature of the terrain, the signals sent to them by the shepherd, and a whole host of other factors. This is one reason why border collies are among the “smartest” dogs. And it’s all due to pattern recognition. There are very few, if any, external rewards provided when these dogs are learning their trade and none while they’re working.

It’s also well known that you can’t train police dogs, military dogs, bomb-sniffing dogs, drug detection dogs, and search-and-rescue dogs using conditioning techniques. That is, you can, you just won’t get a good result if you try to do so.


It’s well known that detection dogs will give false alerts in order to get a food reward. Meanwhile, police dogs are never trained through rewards but through games like tug-of-war that stimulate and satisfy the dog’s urge to bite, a form of drive training that is quite different from reward-based techniques.

As for search-and-rescue dogs—who often need to be able to navigate the rubble and detritus of an urban disaster site—one training technique used is a scenario where the dogs are urged to climb up or down fire escapes while their trainers throw pots and pans in their direction. Talk about the opposite of positive reinforcement! Yet doing this actually makes the dogs perform better.

There many other examples where the behavioral science model and drive training diverge. 

The point is that when dogs are trained through elements of the wolf’s prey drive—the search, the chase, the grab-bite, and the kill-bite—they learn and operate through a completely different set of principles than those espoused by reward-based trainers. And not only that, but the kind of learning and obedience that takes place with drive training is far superior to what you get with reward-based training. 

Lee Charles Kelley
Life Is an Adventure—Where Will Your Dog Take You?

Wednesday, July 27, 2016

Charles Darwin and the Dominance Meme, Part 2

Does Human Observation Create Dominance Hierarchies?

“Although it has been shown that in horses … dominance hierarchies are so poorly developed as to be invisible, needing artificially created competition to develop, … there is a reluctance on the parts of both trainers and some scientists to abandon human attitudes about dominance.”
—Lucy Rees, horse trainer.
The Baby and the Bathwater
Some scientists have tried, with little progress, to dismiss the idea of dominance hierarchies in animals entirely. Others, who still believe the myth, and who toil honestly in the vineyards of animal behavior, are fond of the phrase “Let’s not throw out the baby with the bathwater,” meaning just because there are gaps in logic pertaining to how and why some social animals seem to form dominance hierarchies, the really important stuff remains.

But are there any real contradictions in dominance theories?  

Yes. And as usual, the clearest window into these contradictions comes from David Mech. These two quotes sum things up perfectly.

“Dominance contests are rare, if they exist at all.”  —1999.

“Dominance is one of the most pervasive and important behaviors among wolves in a pack.”  —2010.

So why is there a seemingly conflicting difference between Mech’s two statements? Did conditions on Ellesmere Island change substantially between the late 1980s and 1990s to what they were in 2009? Was there a difference in the technology of the radio collars? Being anesthetized can also cause deep stress, and since hierarchies are more apparent when animals are under stress, was there a difference in the types of anesthetic darts used?

The Stressful Effects of Human Observation

“Just when we think we know it all ...” —Marc Bekoff, 2013.

In an online essay published on June 5, 2013, Dr. Marc Bekoff discusses how the behaviors of animals change in very substantial ways when they’re aware of predators in their environment.

“Its not an overstatement to say that many animals live in constant fear. Consider the reintroduction of grey wolves into Yellowstone National Park in 1995. While most of the attention focused on these magnificent animals, biologist John Laundré was more interested in the elk who had been living in the park.”

Bekoff recounts the realization that Laundre came to: wolves don't just kill elk, they also change the elk’s daily behavior simply by living in the same general area. This is true in other habitats as well. Whenever predators live in the same environment as their prey—they don’t even have to live in close proximity—it creates a perpetual state of apprehension and stress.

Wolves are apex predators, meaning they’re at the top of the heap: no other animal preys on the wolf, at least no other non-human animal does. But since humans are the only animal that poses a real and serious danger, it would make sense that wolves might behave differently when they feel our presence in their environment, particularly if we’re also shooting them with tranquilizer darts. 

It seems to me that if stress is the chief factor causing the formation of dominance hierarchies, and if being watched increases an animal’s stress, then being observed by scientists may very well be stressful to wolves, increasing incidents of so-called dominant and submissive behaviors. These effects would most likely be multiplied in situations where wolves were shot with tranquilizer darts and then outfitted with radio collars.  

Artificial Selection 
Primatologist Linda Marie Fedigan has criticized the way many researchers set up artificial food-competition scenarios designed to test or, more to the point, create dominance relationships in selected dyads (groups of two).

“It has been found that food tests do not generalize to other conflict situations in any consistent way. Not only does the test-situation only exist in the artificial laboratory-test setting, it has been found that priority to food does not necessarily correlate with priority to other incentives, and that dominance, determined through dyadic tests, does not generalize to dominance relationships for the same individuals within the group as a whole. ... Rather than peeling away the layers of the behavioral onion, to arrive at the core of an underlying ‘real’ dominance rank or dominance relationship, it can be argued that the experimenter has in fact created [it].” (1992, Fedigan, “Dominance and Alliance: Chapter 7 of Primate Paradigms: Sex Roles and Social Bonds, University of Chicago Press.)

Lee Alan Dugatkin, an evolutionary biologist at the University of Louisville in Kentucky, writes: “Winner and loser effects are defined as an increased probability of winning an aggressive interaction.” He goes on to say that “Prior theoretical work on dominance hierarchy formation has demonstrated that … loser effects always produce a clear top-ranked (alpha) individual, but all other ranks in a group remain unclear; whereas winner effects always produce strict linear hierarchies in which the rank of each individual is clear. Paradoxically, however, when individual recognition—a phenomenon long thought to stabilize hierarchies—is possible, winner and loser effects have no impact on the probability of forming strict linear hierarchies.” (2004, “Individual recognition, dominance hierarchies and winner and loser effects,” Proceedings of the Royal Society of London.)

Add to this the fact that when researchers isolate two members of a social group, and study their “dominance” relationships, an odd thing sometimes happens: Animal A is said to be dominant over Animal B, and Animal B is dominant over Animal C, yet Animal C is strangely dominant over Animal A, creating a peculiar dominance loop not found anywhere in Nature. 

Natural vs. Artificially-Created Models 
Creating artificial conflicts in “laboratory settings” is one thing. But does that flaw also translate to observations made of the behaviors of animals in Nature?

Yes and no. 

In the 1960s, biologist Thelma Rowell, the first scientist to study baboons in the wild, found that dominance hierarchies didn’t exist in the animals she studied. According to Rowell captive animals only form dominance hierarchies under two sets of conditions: a) where the animals are total strangers to one another, and b) where they lack ready access to resources available to those living in the wild. (This partially coincides with what Dr. Mech wrote in 1999—that captivity stress causes wolves living in confinement to behave differently than those living in the wild.)

Rowell took this idea even further. In her book The Concept of Social Dominance (1974) she wrote, “The experimenter will report that his trials have demonstrated a dominance relationship between the monkeys while in fact they (the trials) have actually caused it.”

Rowell found that baboon males were extremely peaceful and were not at all competitive. There was much positive or friendly interaction. Aggression was rare. “The dominant impression of interaction between males,” Rowell concluded, “was that of active cooperation.” 

Shirley Strum, who studied baboons in the 1970s, took a stronger stance, claiming that dominance hierarchies were a myth.

The differences both women saw in baboon behavior were seemingly related to one thing: stress. Captive baboons, who were under more stress than those living in their natural habitat, formed dominance hierarchies. Wild baboons didn’t.

Like Rowell, Jane Goodall also began her studies in the 1960s, and initially saw no signs of dominance in the chimpanzees at Gombe Stream. That changed after about 10 years when she first saw “dominant” females killing the young of other females of the troop, in some cases eating their young. “During the first ten years of the study I had believed … that the Gombe chimpanzees were, for the most part, rather nicer than human beings. … Then suddenly we found that chimpanzees could be brutal—that they, like us, had a darker side...”

Was this change due to changes in the chimps external environment, or due to changes in the way  Goodall and others were observing them?

In their 1995 book When Elephants Weep Masson and McCarthy wrote, “In recent years the idea of the dominance hierarchy has become more controversial, with some ethologists now asking if such hierarchies are real or a product of human expectation.”

I’ll go beyond that and—siding with Thelma Rowell—say that dominance is not only a product of human expectation, it’s a product of human observation.  

Life Is an Adventure—Where Will Your Dog Take You?

Monday, July 11, 2016

Charles Darwin and the Dominance Meme, Part 1

Does the Concept of Dominance Hierarchies Run Counter to Darwin's Theories?

 Two wolves playing in the snow.
“I aimed for a modest presentation. I would demonstrate simply and directly that male Pumphouse baboons did not have the traditional hierarchy, while females did. … At the end of my presentation, no one spoke. The polite silence was finally broken with barely guarded accusations. I had invented my data. I didn’t have enough information to draw the conclusions I had come to and that there had to be a male dominance hierarchy … I had missed it, that was all.” 
—Shirley C. Strum, Almost Human 
Animal Hierarchies Didn’t Exist Before the 1920s.
The idea that animals form dominance hierarchies is so deeply ingrained into the minds of most scientists today that to say or even hint that things may be otherwise (as Thelma Rowell and Shirley Strum have done) has become something like an act of heresy or sacrilege.1 Animal hierarchies are, in neuroendocrinologist Robert Sapolsky’s words, “textbook social systems, sort of engraved in stone.”

I’ve written a number of posts—both here and at—questioning the validity of dominance hierarchies in dogs and wolves. And I’ve gotten into some hot water for doing so.2 In this post I’ll present new arguments showing:

  1. that the idea of social hierarchies goes counter to Darwin's view of natural selection, 
  2. that there is no evolutionary arc that runs from hierarchical systems in lower animals to those in humans, and
  3. that acting “dominant” may actually reduce an animal’s adaptive fitness.

I realize I’m on a fool’s errand. And I’m more than happy to be taken to task and proved wrong on any of the points I’m going to make here. It just seems to me that dominance hierarchies simply don’t exist in Nature. And it also seems to me that it all starts with a very simple misunderstanding of Darwin’s theory of natural selection.

In Paul Ekman’s 1998 edition of Darwin’s The Expression of the Emotions and Man and Animals, evolutionary psychologist Daniel G. Freedman seems to have criticized Darwin for being unaware of animal hierarchies: “Darwin is aware of submissiveness,” Freedman wrote, “but the naturalistic notion of, say, wolves forming an hierarchical pack is missing. Social hierarchies is a major concept of animal observation today, and many of Darwin’s examples of antithesis would be seen now in terms of hierarchy.” 

True. But is that because Darwin missed the boat or does the idea of dominance hierarchies run counter to Darwin’s thoughts on the nature of social animals?

I don’t think Darwin was wrong. I think it’s more likely that the reason he didn’t mention dominance hierarchies is that they didn’t exist during his lifetime. There were no animal hierarchies for him (or anyone else) to observe because, in all probability, they simply didn’t exist until the 1920s when Norwegian biologist Thorleif Schjelderup- Ebbe published his dissertation on pecking orders in chickens.

Scientists began looking for “pecking orders” in all social animals. They sometimes found what they were looking for—though the truth is, sometimes they didn’t. 

Still the concept of pecking orders—which eventually morphed into what we now call dominance hierarchies—caught on like wildfire, or like a meme, an ideological virus that infects the human mind and prevents us from seeing the truth. This meme is so powerful3 that when dedicated scientists like Shirley Strum or Thelma Rowell present data that run counter to this idea, their evidence is ignored, their methods called into question, and the concept of a “latent hierarchy” is invented to account for the lack of hierarchical structure. 

Dominant Species vs. Dominant Behaviors 

I know the idea that social animals form dominance hierarchies seems like pure Darwinism to most. Animals in competition over resources! Yes! But let’s take a look at what Darwin’s theory is really about. 

“The theory of natural selection is grounded on the belief that each new variety, and ultimately each new species, is produced and maintained by having some advantage over those with which it comes into competition.” (Darwin, On the Origin of Species, 371.) 

Here the nature of competition is reserved for different species, not members of the same species, and especially not for members of the same social group. In fact Darwin believed that social animals may be more adaptable because of their ability to work together: “Social animals perform many little services for each other: horses nibble, and cows lick each other, on any spot which itches: monkeys search each other for external parasites. … Animals also render more important services … thus wolves … hunt in packs, and aid each other in attacking their victims.” (The Descent of Man, 71, 72) 

Does it really make sense that members of a social group would be in competition with each other over resources? It seems to me that sociability is about pooling resources, not fighting over them. Finding, isolating, and quantifying these sorts of resource sharing behaviors—now often referred to as “biological altruism”—has become all the rage recently. It’s been shown that even plants share resources with their closest kin. And one of the reasons scientists are so interested in biological altruism is that it supposedly runs counter to Darwin’s concepts of species being in competition with one another and gaining an advantage over them. 

Perhaps the clearest window into how the dominance meme fails to make sense is the wolf pack—an aggregation of animals whose social structure is built almost entirely around the need to hunt large, dangerous prey by working together as a cohesive social unit. If the prey animal is the pack’s most important resource, and hierarchy formation is about competition over resources, then we should see intense posturing and jockeying for position both during the hunt, and when the pack feasts on its fallen prey. Yet pack members work together, not against one another—neither dominant nor submissive behaviors are ever seen during the hunt. And once the hunt is over, all members have mutual access to the carcass of the fallen prey animal, with no hierarchy and very little, if any, dominance visible. 

Plus—and this may be even more important—it’s hard to see how dominance (threats of aggression) would foster group harmony and cooperation. It seems more likely to me that affiliative behaviors—licking each other’s fur, cuddling in the cold, playing with one another, etc.—are the real glue that holds a wolf pack together. 

Leveling Mechanisms in Non-Heirarchical Human Societies 
Another meme is based on what I see as a common misinterpretation of Darwin’s statement that “The difference in mind between man and the higher animals, great as it is, is certainly one of degree and not of kind.” Almost everyone who quotes this trope ignores the fact that a few sentences later Darwin admitted that he could be wrong: “If it be maintained that certain powers, such as self-consciousness, abstraction, etc. are peculiar to man, it may well be … the result of the continued use of a highly-developed language.”

Still, scientists look at the arc of evolution (and thus the arc of hierarchical systems) as reflecting this shaky theoretical difference of “degree and not of kind.” This may be one reason we can’t help but see dominance hierarchies in apes, wolves, crayfish, and guppies, etc. 3

But is there really an evolutionary arc that runs from lower animals to human beings?

Primatologist Shirley Strum writes, “Many of the models of human evolution have assumed that the human experiment began with limited social resources, instinctive and compulsory aggression, male domination and rigid hierarchy. But these models seem faulty if we now know that ‘lowly’ baboons are more complex and have more diverse options. Were the earliest humans not as smart ... as baboons?”

And we don’t even have to look at baboons, we can look at some human groups, small bands of indigenous hunter/gatherer societies who not only don’t form dominance hierarchies, they’ve developed leveling mechanisms to prevent them from forming. In these groups if one member tries to act dominant, he's quickly shunned. And one of the primary reasons these groups have these mechanisms in place is because hierarchical systems lessen the group’s ability to hunt successfully just as it would in a wolf pack.

Another leveling mechanism in these egalitarian societies relates back to wolf behavior as well, and  that’s play, an activity that wolves—and especially dogs—engage in on a regular basis. (Now there’s a set of behaviors that actually do have an evolutionary arc…).  

Acting “Dominant” Decreases an Animal’s Adaptive Fitness 
It’s said that the dominant member of the group is the one most likely to pass on his genes to the next generation, and that’s the fundamental purpose of hierarchies: to provide the most robust animal a non-negotiable platform for reproduction. But if the true purpose of a wolf’s social instincts is to enable the pack to work together to hunt large, dangerous prey, how do internecine battles over bones and sleeping places relate to their overall adaptive fitness? In wild packs it’s normally rare for any but the breeding male and female to pass on their genetic material to future generations. Would one night’s sleep on a less-than-perfect “bed” or taking a bone away from another wolf really tip the scale toward genetic oblivion, and that’s why wolves supposedly have to exert their “dominance” over such things?

Is it even true that the most dominant male in a wolf pack—or any social animal group—is automatically more able to pass on his genes to the next generation?

Apparently not. In his studies of baboons Robert Sapolsky found that dominant behaviors actually have a negative impact on survival.4

At one point, a troop Sapolsky had been studying for years, and who exhibited the classic male hierarchical structure, came across a human garbage site. Yay! Free food! But the food was unfortunately tainted with tuberculosis. The troop was decimated.

Yet interestingly, it was the most “dominant” baboons who lost their lives, not the other way around. The reason? Dominance isn’t a normal or natural behavior. It’s always triggered by stress. And high levels of the stress hormone cortisol tend to suppress an animal’s immune system. (Excessive levels of testosterone don’t help matters any, either.) And that's why the most dominant baboons in the troop died.

“It wasn’t random,” says Sapolsky. “If you were aggressive, and if you were not particularly socially connected, socially affiliative, if you didn’t spend your time grooming and hanging out—if you were that kind of male—you died.” 

A generation later, Sapolsky came back to find that the troop had been transformed. They were much more amenable, social, and affiliative now. There was no longer a clear hierarchical structure (as Rowell and Strum had seen in their studies of baboons). And if you were an “alpha type,” trying to dominate others, you were quickly shunned!

Sapolsky says, “One of the things that baboons teach us is that if they’re able to, in one generation, transform what are supposed to be textbook social systems, sort of engraved in stone, we don’t have an excuse when we say there’s a certain inevitability about human social systems.”

Another thing that the baboons teach us is that hierarchy formation in animals does not necessarily serve an adaptive purpose. In fact, just the opposite may be true.  And, in the end, these social structures only exist in our own minds because that’s how we see the world.

Some would argue that dominant and submissive behaviors do, in fact, exist. They’ve been observed. Data has been collected and analyzed. And while there may be gaps in logic here and there, it’s simply undeniable that these behaviors exist.

I agree. They do exist, but they’re brought on by the simple act of being observed by human beings. In fact—and I’ll develop this idea further in my next post—these behaviors are more likely to be produced when animals are being observed by male rather than female scientists. 

“Life Is an Adventure
Where Will Your Dog Take You?”


1) “I was naïve. I had imagined that one did the research, gathered the information, analyzed, interpreted and presented it to the scientific world. Then the work would be evaluated and incorporated, if accepted, into the basic knowledge within the field. But there are cliques in science as in any other facet of human endeavor. If you are part of the ‘in’ group, even minor findings are discussed and integrated, eventually becoming part of the working knowledge of the field. If you are not part of the clique, you stand a good chance of being ignored.”                                                             —Shirley C. Strum, Almost Human

2) Every time I posted a mea culpa at PsychologyToday, it was because other authors at the site complained when I wrote about dominance hierarchies, proving that dominance hierarchies do exist, just in scientific circles not animal groups. (I’m not saying this to compare myself to Shirley Strum, Thelma Rowell, or others who’ve fought the orthodoxy, but to point out how strongly those in the scientific community feel about the subject.)

3) “Our findings show for the first time that individual differences in the preference for social dominance hierarchy predict neural response within left AI [anterior insula] and ACCs [anterior cingulate cortices].” (“Neural Basis of Preference for Human Social Hierarchy versus Egalitarianism,” Joan Y. Chiao.  

4) Please watch this video on "why hierarchy creates a destructive force within the human psyche," to see and hear Sapolsky describe, in his own words, how the baboon troop changed from a pro-dominance to a pro-affiliative society.